A novel Monoclonal Antibody against Notch1 Targets Leukemia-associated Mutant Notch1 and Depletes Therapy Resistant Cancer Stem Cells in Solid Tumors
نویسندگان
چکیده
Higher Notch signaling is known to be associated with hematological and solid cancers. We developed a potential immunotherapeutic monoclonal antibody (MAb) specific for the Negative Regulatory Region of Notch1 (NRR). The MAb604.107 exhibited higher affinity for the "Gain-of-function" mutants of Notch1 NRR associated with T Acute lymphoblastic Leukemia (T-ALL). Modeling of the mutant NRR with 12 amino-acid insertion demonstrated "opening" resulting in exposure of the S2-cleavage site leading to activated Notch1 signaling. The MAb, at low concentrations (1-2 μg/ml), inhibited elevated ligand-independent Notch1 signaling of NRR mutants, augmented effect of Thapsigargin, an inhibitor of mutant Notch1, but had no effect on the wild-type Notch1. The antibody decreased proliferation of the primary T-ALL cells and depleted leukemia initiating CD34/CD44 high population. At relatively high concentrations, (10-20 μg/ml), the MAb affected Notch1 signaling in the breast and colon cancer cell lines. The Notch-high cells sorted from solid-tumor cell lines exhibited characteristics of cancer stem cells, which were inhibited by the MAb. The antibody also increased the sensitivity to Doxorubucinirubicin. Further, the MAb impeded the growth of xenografts from breast and colon cancer cells potentiated regression of the tumors along with Doxorubucin. Thus, this antibody is potential immunotherapeutic tool for different cancers.
منابع مشابه
A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells.
Overexpression of Notch receptors and ligands has been associated with various cancers and developmental disorders, making Notch a potential therapeutic target. Here, we report characterization of Notch1 monoclonal antibodies (mAb) with therapeutic potential. The mAbs generated against epidermal growth factor (EGF) repeats 11 to 15 inhibited binding of Jagged1 and Delta-like4 and consequently, ...
متن کاملA Novel mAb against a Human CD34 Peptide Reacts with the Native Protein on CD34+ Cells
Background: Human CD34 is a transmembrane glycoprotein which is expressed in human hematopoietic stem cells (HSCs) and the small- vessel endothelial cells of a variety of tissues. CD34 plays a critical role as a marker for diagnosis and classification of leukemia. Anti CD34 antibodies are used for isolation and purification of HSCs from bone marrow, peripheral blood and cord blood. Objective: ...
متن کاملCancer stem cells: therapeutic targets
Cancer stem cells (CSCs) have been identified as rare cellular populations in many cancers, including leukemia and solid tumors. This minor subpopulation of cancerous cells is immortal tumor-initiating cells which thought to be responsible for cancer initiation, progression, metastasis, recurrence and drug/radiation resistance. Low proliferative rate, high self-renewing capacity, differentiatio...
متن کاملTherapeutic Discovery A Monoclonal Antibody against Human Notch1 Ligand– Binding Domain Depletes Subpopulation of Putative Breast Cancer Stem–like Cells
Overexpression ofNotch receptors and ligands has been associatedwith various cancers anddevelopmental disorders,makingNotch a potential therapeutic target.Here,we report characterization ofNotch1monoclonal antibodies (mAb) with therapeutic potential. The mAbs generated against epidermal growth factor (EGF) repeats 11 to 15 inhibited binding of Jagged1 andDelta-like4 and consequently, signaling ...
متن کاملNOTCH1 Activation Depletes the Pool of Side Population Stem Cells in ATL
BACKGROUND HTLV-I infection is associated with the development of adult T-cell leukemia (ATL), a malignancy characterized by a high rate of disease relapse and poor survival. Previous studies reported the existence of side population (SP) cells in HTLV-I Tax transgenic mouse models. These studies showed that these ATL-like derived SP cells have both self-renewal and leukemia renewal capacity an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015